If it's not what You are looking for type in the equation solver your own equation and let us solve it.
13x+x^2=32
We move all terms to the left:
13x+x^2-(32)=0
a = 1; b = 13; c = -32;
Δ = b2-4ac
Δ = 132-4·1·(-32)
Δ = 297
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{297}=\sqrt{9*33}=\sqrt{9}*\sqrt{33}=3\sqrt{33}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(13)-3\sqrt{33}}{2*1}=\frac{-13-3\sqrt{33}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(13)+3\sqrt{33}}{2*1}=\frac{-13+3\sqrt{33}}{2} $
| 8-1÷3x=16 | | 2x²−2x−180=0 | | 900+d=1,822 | | X+45+2x+x+15=180 | | x+19/30=8/10 | | (3x+3)2(3+x)=180 | | 15u2–11u=0 | | 25x+40x=90 | | 3/4x+17=-9x7x+37 | | x^2+15x-1125=0 | | 3x-9=x-28 | | 3^(5x)=81 | | x2+15x-1125=0 | | 25-6(4x-2)=-5 | | 3(3x-4)-6=44 | | 3a-4=5a | | 1x÷2+13=9 | | 36=6/6x | | 3+2(4+2x)+1=20-2 | | x+(.1*x)=218 | | X+((9/100)*x)=218 | | 150=x-144 | | x-51=-43 | | -23+x^2+5x=0 | | x-99=-104 | | -2+2=-3x-7 | | 4.12x+37.08=74.16 | | 8x+2=6x+29 | | 5x+13=7x+9 | | 3x+11=5x+8 | | 2x=12x-4+12 | | 9÷a=-4 |